

INVESTMENTS IN EDUCATION DEVELOPMENT

Streamlining the Mathematics Studies at the Faculty of Science of Palacky University in Olomouc

Registry number: CZ.1.07/2.2.00/28.0141

International Symposium on Modern Mathematics and Mechanics

Faculty of Science, University Olomouc, June 23-27, 2014

Lecture 1 : Introduction to Domain Decomposition Methods Lecture 2 : Neumann-Neumann DD Algorithm Lecture 3 : DDM for Contact Problems

TAQUEIK SASSI

University of Caen Basse Normandie

Outline

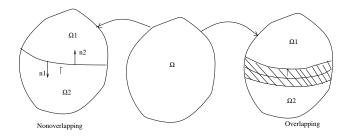
- Motivations
- The model problem
- Schwarz Domain Decomposition
- Nonoverlapping Domain Decomposition
- Basic Domain Decomposition Algorithms

MOTIVATIONS

- Simplification of problems on complicated geometry
- The separation of the physical domain into regions that can be modeled with different equations: very convenient framework for the solution of heterogeneous and multiphysics problems gouverned by PDEs
- Combine DDM and any disretization method for PDEs (FEM, FV for example) to make their algebraic solution more efficient on parallel comptuer.

THE IDEA

- The physical domain Ω is divided into two or more subdomains on which discretized problems of smaller dimension are to be solved
- Parallel algorithms can be used to solve the resulting subproblems
- **3** There are two ways to divide Ω :
 - with nonoverlapping subdomains
 - with overlapping subdomains



THE MODEL PROBLEM

Consider the Poisson equation on a region $\Omega \in \mathbb{R}^2$. Let $f \in L^2(\Omega)$ be given. Find $u: \Omega \longrightarrow \mathbb{R}$ s.t.

$$\begin{cases}
-\Delta u &= f & \text{in } \Omega \\
u &= 0 & \text{on } \partial\Omega
\end{cases}$$
(1)

The weak formulation reads : find $u \in V$ s.t.

$$a(u,v) = (f,v) \qquad \forall v \in V$$

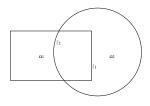
where

$$\begin{split} V &= H^1_0(\Omega) = \{v \in H^1(\Omega), \quad v = 0 \text{ on } \partial \Omega\} \\ a(u,v) &= \int_{\Omega} \nabla u \nabla v \; dx \qquad \qquad (f,v) = \int_{\Omega} f v \; dx \end{split}$$

 $a(\cdot,\cdot)$ is the bilinear form associated to the Laplace operator.

SCHWARZ DOMAIN DECOMPOSITION

The first Domain Decomposition Method was introduced by Schwarz in 1870 for a complicated domain, composed for two simple ones, a disk and a rectangle.



To show that the equation

$$\Delta u = 0 \text{ in } \Omega, \qquad u = g \text{ on } \partial \Omega$$

can be integrated with arbitrary boundary conditions. Schwarz proposed an iterative method which uses solutions in a disk and rectangle

• Start with initial guess u_1^0 along Γ_1 , for $m\geq 1$ compute iteratively u_1^{m+1} and u_2^{m+1} according to the algorithm (for simplicity, we omit the Dirichlet BC on $\partial\Omega$

$$\left\{ \begin{array}{ll} -\Delta u_1^{m+1} = 0 & \text{ in } \Omega_1 \\ u_1^{m+1} = \textcolor{red}{u_2^m} & \text{ on } \Gamma_1 \end{array} \right.$$

$$\left\{ \begin{array}{ll} -\Delta u_2^{m+1} = 0 & \text{ in } \Omega_1 \\ u_2^{m+1} = \underline{u_1^{m+1}} & \text{ on } \Gamma_2 \end{array} \right.$$

 DD 22: International Conference on Domain Decomposition has been held in 13 countries (DD 1, Paris 1987).

NONOVERLAPPING DECOMPOSITION

Suppose that Ω is partitioned into two nonoverlapping subdomains Ω_1 and Ω_2

$$\overline{\Omega} = \overline{\Omega_1 \cup \Omega_2} \qquad \qquad \Omega_1 \cap \Omega_2 = \emptyset \qquad \qquad \Gamma = \partial \Omega_1 \cap \partial \Omega_2$$

Problem (1) is equivalent to the following coupled problem :

$$\begin{cases} -\Delta u_1 &= f & \text{in } \Omega_1 \\ u_1 &= 0 & \text{on } \partial \Omega_1 \backslash \Gamma \end{cases}$$

$$\begin{aligned} u_1 &= u_2 & \text{on } \Gamma \\ \frac{\partial u_1}{\partial n_1} &= -\frac{\partial u_2}{\partial n_2} & \text{on } \Gamma \end{cases}$$

$$\begin{cases} -\Delta u_2 &= f & \text{in } \Omega_2 \\ u_2 &= 0 & \text{on } \partial \Omega_2 \backslash \Gamma \end{cases}$$

- u_i is the restriction of u on Ω_i
- ullet n_i the outward normal to Ω_i
- the conditions on the interfce Γ are called *transmission* conditions :
 - ullet the continuity of the solution at the interface Γ
 - the continuity of the normal derivative (the flux) at the interface Γ

Theorem

The function u is the solution of (1) if and only if the functions $u_1 \in V_1$ and $u_2 \in V_2$ satisfy the following split problem

$$a_1(u_1, v) = (f, v)_1 \quad \forall v \in V_1^0$$
 (2)

$$u_1 = u_2 \quad \text{on } \Gamma$$
 (3)

$$a_2(u_2, v) = (f, v)_2 - a_1(u_1, R_1 \gamma(v)) + (f, R_1 \gamma(v))_1 \ \forall v \in V_2 \quad (4)$$

- $(f,v)_k$ the scalar product of $L^2(\Omega_k)$ (k=1,2)
- $\gamma(v)$ the trace on Γ of fuction $v \in H^1(\Omega)$
- $V_k = \{v \in H^1(\Omega_k), v = 0 \text{ on } \partial\Omega \cap \partial\Omega_k\}, \quad V_0^k = H_0^1(\Omega_k)$
- R_k is the harmonic extention operator of the trace to Ω_k

For $\varphi \in \Gamma$, $R_k \in \Omega_k$ s.t.

$$a_k(R_k\varphi, v) = 0 \quad \forall v \in V_k^0$$

 $R_k\varphi = \varphi \quad \text{on } \Gamma$

Proof

- \Rightarrow) If u is the solution of (1) then $u_1 \in V_1$ and $u_2 \in V_2$
 - Condition $u_1 = u_2$ is automatically verified since $u \in H^1(\Omega)$
 - For any $v \in V_1^0$, choose $\tilde{v} = (v,0) \in H_0^1(\Omega)$ as a test function in (1), then (2) is satisfied.
 - For $v \in V_2$, let $\tilde{v} = (R_1 \gamma(v), v) \in H^1_0(\Omega)$ s.t. $\tilde{v} = v \in \Omega_2$ and $\tilde{v} = R_1 \gamma(v) \in \Omega_1$, then (4) is satisfied.

← Viceversa

- Clearly, $u \in H_0^1(\Omega)$.
- For $v\in H^1_0(\Omega)$, take $v_1=v-R_1\gamma(v)$ in Ω_1 and $v_2=v$ in Ω_2 , note that $v_1\in V^0_1$, $v_2\in V_2$, then

$$a(u,v) = a_1(u_1, v_1 + R_1\gamma(v)) + a_2(u_2, v_2)$$

$$= a_1(u_1, v_1) + a_1(u_1, R_1\gamma(v)) + a_2(u_2, v_2)$$

$$= (f, v_1)_1 + (f, v_2)_2 + (f, R_1\gamma(v))_1$$

$$= (f, v_1 + R_1\gamma(v))_1 + (f, v_2)_2$$

$$= (f, v)$$

Remark

simple integration by parts in (4) shows

$$\int_{\Gamma} \frac{\partial u_2}{\partial n_2} v d\Gamma = -\int_{\Gamma} \frac{\partial u_1}{\partial n_2} v d\Gamma \qquad \forall v \in V_2$$

Problem (2) is the variational formulation of

$$\begin{cases} -\Delta u_1 &= f & \text{in } \Omega_1 \\ u_1 &= 0 & \text{on } \partial \Omega_1 \backslash \Gamma \\ u_1 &= u_2 & \text{on } \Gamma \end{cases}$$

Problem (4) is the variational formulation of

$$\begin{cases} -\Delta u_2 &= f & \text{in } \Omega_2 \\ u_2 &= 0 & \text{on } \partial \Omega_2 \backslash \Gamma \\ \frac{\partial u_2}{\partial n_2} &= -\frac{\partial u_1}{\partial n_1} & \text{on } \Gamma \end{cases}$$

DIRICHLET-NEUMANN ALGORITHM

Given u_2^0 on Γ , for m>1 solve the problems

$$\left\{ \begin{array}{lll} -\Delta u_1{}^m &=& f & \text{in } \Omega_1 \\ u_1{}^m &=& 0 & \text{on } \partial \Omega_1 \backslash \Gamma \\ u_1{}^m &=& u_2{}^{m-1} & \text{on } \Gamma \end{array} \right.$$

$$\begin{cases}
-\Delta u_2^m &= f & \text{in } \Omega_2 \\
u_2^m &= 0 & \text{on } \partial \Omega_2 \backslash \Gamma \\
\frac{\partial u_2^m}{\partial n_2} &= \frac{\partial u_1^m}{\partial n_1} & \text{on } \Gamma
\end{cases}$$

The equivalence theorem guarantees that when the two sequences (u_1^m) and (u_2^m) converge, then their limit will be necessarily the solution to the exact problem. The DN algorithm is therefore consistent.

A variant of the DN algorithm can be set up by replacing the Dirichlet condition in the first subdomain by

$$u_1^m = \theta u_2^{m-1} + (1-\theta)u_1^{m-1}$$
 on Γ

that is by introducing a relaxation which depends on a positive parameter θ . In such a way it is always possible to reduce the error between two subsequent iterates.

In general, there exists a suitable value $\theta_{max} < 1$ such that the DN algorithm converges for any possible choice of the relaxation parameter θ in the interval $(0, \theta_{max})$.

NEUMANN-NEUMANN ALGORITHM

 Ω is divided into two nonoverlapping subdomains. Denote by λ the (unknown) value of the solution u at their interface Γ . For any λ^0 on Γ , for m>1 and k=1,2 solve in parallel the following problems

$$\begin{cases} -\Delta u_k^{\ m+1} &= f & \text{in } \Omega_k \\ u_k^{\ m+1} &= 0 & \text{on } \partial \Omega_k \backslash \Gamma \\ u_k^{\ m+1} &= \lambda^m & \text{on } \Gamma \end{cases}$$

$$\begin{cases} -\Delta w_k^{\,m+1} &= f & \text{in } \Omega_k \\ w_k^{\,m+1} &= 0 & \text{on } \partial \Omega_k \backslash \Gamma \\ \frac{\partial w_k^{\,m+1}}{\partial n_k} &= (-1)^k \Big(\frac{\partial u_1^{\,m+1}}{\partial n_1} + \frac{\partial u_2^{\,m+1}}{\partial n_2} \Big) & \text{on } \Gamma \end{cases}$$

$$\lambda^{k+1} = \lambda^k - \theta(w_1^{\,m+1} - w_2^{\,m+1}) & \text{on } \Gamma$$

where θ is a positive acceleration parameter.

ROBIN-ROBIN ALGORITHM

For m > 0 solve in parallel the following problems

$$\left\{ \begin{array}{lll} -\Delta u_1^{m+1} & = & f & \text{in } \Omega_1 \\ u_1^{m+1} & = & 0 & \text{on } \partial \Omega_1 \backslash \Gamma \\ \frac{\partial u_1^{m+1}}{\partial n_1} + \alpha_1 u_1^{m+1} & = & \frac{\partial u_2^m}{\partial n_2} + \alpha_2 u_2^m & \text{on } \Gamma \end{array} \right.$$

$$\left\{ \begin{array}{lll} -\Delta u_2^{m+1} & = & f & \text{in } \Omega_2 \\ u_2^{m+1} & = & 0 & \text{on } \partial \Omega_2 \backslash \Gamma \\ \frac{\partial u_2^{m+1}}{\partial n_2} + \alpha_2 u_2^{m+1} & = & \frac{\partial u_1^m}{\partial n_1} + \alpha_1 u_1^m & \text{on } \Gamma \end{array} \right.$$

where α_1 and α_2 are non-negative acceleration parameters.

REFERENCES

- B.F. Smith, P.E. Bjørstad, W.D. Gropp (1996): Domain Decomposition. Cambridge University Press, Cambridge.
- A. Quarteroni and A. Valli (1999): Domain Decomposition Methods for Partial Differential Equations. Oxford Science Publications, Oxford.
- A. Toselli and O.B. Widlund (2005): Domain Decomposition Methods â Algorithms and Theory. Springer-Verlag, Berlin and Heidelberg.