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Motivations

Simplification of problems on complicated geometry

The separation of the physical domain into regions that can
be modeled with different equations : very convenient
framework for the solution of heterogeneous and multiphysics
problems gouverned by PDEs

Combine DDM and any disretization method for PDEs (FEM,
FV for example) to make their algebraic solution more
efficient on parallel comptuer.
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The idea

1 The physical domain Ω is divided into two or more
subdomains on which discretized problems of smaller
dimension are to be solved

2 Parallel algorithms can be used to solve the resulting
subproblems

3 There are two ways to divide Ω :

with nonoverlapping subdomains
with overlapping subdomains
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The model problem

Consider the Poisson equation on a region Ω ∈ R2. Let f ∈ L2(Ω)
be given. Find u : Ω −→ R s.t.{

−∆u = f in Ω
u = 0 on ∂Ω

(1)

The weak formulation reads : find u ∈ V s.t.

a(u, v) = (f, v) ∀v ∈ V

where
V = H1

0 (Ω) = {v ∈ H1(Ω), v = 0 on ∂Ω}

a(u, v) =
∫

Ω
∇u∇v dx (f, v) =

∫
Ω
fv dx

a(·, ·) is the bilinear form associated to the Laplace operator.
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Schwarz Domain Decomposition

The first Domain Decomposition Method was introduced by
Schwarz in 1870 for a complicated domain, composed for two
simple ones, a disk and a rectangle.

Ω1 Ω2

1

2

To show that the equation

∆u = 0 in Ω, u = g on ∂Ω

can be integrated with arbitrary boundary conditions. Schwarz
proposed an iterative method which uses solutions in a disk and
rectangle
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Start with initial guess u0
1 along Γ1, for m ≥ 1 compute

iteratively um+1
1 and um+1

2 according to the algorithm (for
simplicity, we omit the Dirichlet BC on ∂Ω{

−∆um+1
1 = 0 in Ω1

um+1
1 = um

2 on Γ1

{
−∆um+1

2 = 0 in Ω1

um+1
2 = um+1

1 on Γ2

DD 22 : International Conference on Domain Decomposition
has been held in 13 countries (DD 1, Paris 1987).
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Nonoverlapping decomposition

Suppose that Ω is partitioned into two nonoverlapping subdomains
Ω1 and Ω2

Ω = Ω1 ∪ Ω2 Ω1 ∩ Ω2 = ∅ Γ = ∂Ω1 ∩ ∂Ω2

Problem (1) is equivalent to the following coupled problem :{
−∆u1 = f in Ω1

u1 = 0 on ∂Ω1\Γ

u1 = u2 on Γ
∂u1

∂n1
= −∂u2

∂n2
on Γ

{
−∆u2 = f in Ω2

u2 = 0 on ∂Ω2\Γ
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ui is the restriction of u on Ωi

ni the outward normal to Ωi

the conditions on the interfce Γ are called transmission
conditions :

the continuity of the solution at the interface Γ
the continuity of the normal derivative (the flux) at the
interface Γ
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Theorem

The function u is the solution of (1) if and only if the functions
u1 ∈ V1 and u2 ∈ V2 satisfy the following split problem

a1(u1, v) = (f, v)1 ∀v ∈ V 0
1 (2)

u1 = u2 on Γ (3)

a2(u2, v) = (f, v)2 − a1(u1, R1γ(v)) + (f,R1γ(v))1 ∀v ∈ V2 (4)

(f, v)k the scalar product of L2(Ωk) (k = 1, 2)

γ(v) the trace on Γ of fuction v ∈ H1(Ω)
Vk = {v ∈ H1(Ωk), v = 0 on ∂Ω ∩ ∂Ωk}, V k

0 = H1
0 (Ωk)

Rk is the harmonic extention operator of the trace to Ωk
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For ϕ ∈ Γ, Rk ∈ Ωk s.t.

ak(Rkϕ, v) = 0 ∀v ∈ V 0
k

Rkϕ = ϕ on Γ

Proof

⇒) If u is the solution of (1) then u1 ∈ V1 and u2 ∈ V2

Condition u1 = u2 is automatically verified since u ∈ H1(Ω)
For any v ∈ V 0

1 , choose ṽ = (v, 0) ∈ H1
0 (Ω) as a test function

in (1), then (2) is satisfied.

For v ∈ V2, let ṽ = (R1γ(v), v) ∈ H1
0 (Ω) s.t. ṽ = v ∈ Ω2 and

ṽ = R1γ(v) ∈ Ω1, then (4) is satisfied.
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⇐ Viceversa

Clearly, u ∈ H1
0 (Ω).

For v ∈ H1
0 (Ω), take v1 = v −R1γ(v) in Ω1 and v2 = v in

Ω2, note that v1 ∈ V 0
1 , v2 ∈ V2, then

a(u, v) = a1(u1, v1 +R1γ(v)) + a2(u2, v2)
= a1(u1, v1) + a1(u1, R1γ(v)) + a2(u2, v2)
= (f, v1)1 + (f, v2)2 + (f,R1γ(v))1

= (f, v1 +R1γ(v))1 + (f, v2)2

= (f, v)
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Remark

simple integration by parts in (4) shows∫
Γ

∂u2

∂n2
vdΓ = −

∫
Γ

∂u1

∂n2
vdΓ ∀v ∈ V2

Problem (2) is the variational formulation of
−∆u1 = f in Ω1

u1 = 0 on ∂Ω1\Γ
u1 = u2 on Γ

Problem (4) is the variational formulation of
−∆u2 = f in Ω2

u2 = 0 on ∂Ω2\Γ
∂u2

∂n2
= −∂u1

∂n1
on Γ
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Dirichlet-Neumann Algorithm

Given u0
2 on Γ, for m > 1 solve the problems

−∆u1
m = f in Ω1

u1
m = 0 on ∂Ω1\Γ

u1
m = u2

m−1 on Γ


−∆u2

m = f in Ω2

u2
m = 0 on ∂Ω2\Γ

∂u2
m

∂n2
=

∂u1
m

∂n1
on Γ

The equivalence theorem guarantees that when the two sequences
(um

1 ) and (um
2 ) converge, then their limit will be necessarily the

solution to the exact problem. The DN algorithm is therefore
consistent.
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A variant of the DN algorithm can be set up by replacing the
Dirichlet condition in the first subdomain by

um
1 = θum−1

2 + (1− θ)um−1
1 on Γ

that is by introducing a relaxation which depends on a positive
parameter θ. In such a way it is always possible to reduce the error
between two subsequent iterates.
In general, there exists a suitable value θmax < 1 such that the DN
algorithm converges for any possible choice of the relaxation
parameter θ in the interval (0, θmax).
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Neumann-Neumann Algorithm

Ω is divided into two nonoverlapping subdomains. Denote by λ the
(unknown) value of the solution u at their interface Γ. For any λ0

on Γ, for m > 1 and k = 1, 2 solve in parallel the following
problems 

−∆uk
m+1 = f in Ωk

uk
m+1 = 0 on ∂Ωk\Γ

uk
m+1 = λm on Γ


−∆wk

m+1 = f in Ωk

wk
m+1 = 0 on ∂Ωk\Γ

∂wk
m+1

∂nk
= (−1)k

(∂u1
m+1

∂n1
+
∂u2

m+1

∂n2

)
on Γ

λk+1 = λk − θ(wm+1
1 − wm+1

2 ) on Γ

where θ is a positive acceleration parameter.
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Robin-Robin Algorithm

For m > 0 solve in parallel the following problems
−∆um+1

1 = f in Ω1

um+1
1 = 0 on ∂Ω1\Γ
∂u1

m+1

∂n1
+ α1u1

m+1 =
∂u2

m

∂n2
+ α2u2

m on Γ


−∆um+1

2 = f in Ω2

um+1
2 = 0 on ∂Ω2\Γ
∂u2

m+1

∂n2
+ α2u2

m+1 =
∂u1

m

∂n1
+ α1u1

m on Γ

where α1 and α2 are non-negative acceleration parameters.
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