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Outline of the talk
• Physical background, motivation and applications

• Elliptic hemivariational inequality

• Example: the destruction support problem

• Variational formulation and existence results

• Three models and three hemivariational inequalities

– An elastic frictional problem
– A viscoelastic frictional problem
– An electro-elastic frictional problem

Based on some recent results from the following recent monograph.

S. Migorski, A. Ochal, M. Sofonea, Nonlinear Inclusions and Hemivaria-
tional Inequalities. Models and Analysis of Contact Problems, Advances
in Mechanics and Mathematics, vol. 26, Springer, New York, 2013.
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Motivation: inequality problems in Mechanics

Convex energy functions =⇒ Monotone relations
=⇒ Variational Inequalities

(Signorini, Fichera, Duvaut, Lions)

Nonconvex energy functions =⇒ Nonmonotone relations
=⇒ Hemivariational Inequalities

(Panagiotopoulos, Naniewicz)
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Motivation

• Contact phenomena appear in everyday life and play a very important
role in engineering structures and systems.

• These include: friction, wear, adhesion, frictional heat generation, and
lubrication, among others; are inherently complex and time dependent;
take place on the outer surfaces of parts and components, and involve
thermal, physical and chemical processes.

• The need for a comprehensive well posed mathematical theory, based
on fundamental physical principles, that can predict reliably the evo-
lution of the contact process in different situations and under various
conditions, has been recognized in recent years.
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Applications
In applications there are four main areas of friction control:

• Low friction lubrication: needed in machinery to reduce wear, tear, and
loss of useful energy.

• High friction: needed in brakes of cars, trains, and moving systems.

• Friction within specified bounds: needed in braking systems to avoid
jerks and sudden accelerations and decelerations.

• Slip dependence: needed to avoid slip/stick transitions and the associ-
ated unpleasant noise - squeaks and squeals.
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Brakes
• Brakes are used to transmit forces to reduce the velocity of a vehicle.

• If the friction coefficient reaches a certain value, the brake will become
unstable and a squealing noise can occur.

• Industry is interested in reducing the squealing noise and the temper-
ature development within the brakes. Otherwise cooling devices would
have to be installed.
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Machine Tools
• In machine tool with friction (e.g. a grinding machine) the friction plays

a role to develop smooth surfaces.

• The worn particles have high temperatures.

• One uses cooling fluid to reduce temperature, remove worn material
from the grinding disk and increase the surface quality.

• Machine chattering can occur. Chatter vibrations belong to friction
induced vibrations.
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Motors
• Friction and wear problems between piston and cylinder of a motor are

a dynamical contact problem.

• The oil acts as a lubricant within the contact regions and reduces fric-
tion and wear.

• Industry is interested in increasing the lifetime of motor components
and optimize the system behavior.
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Turbines
• Turbine blades are excited by fluctuating gas forces.

• Friction is introduced to dissipate the vibration energy.

• Goal: to increase the lifetime of the blades and to reduce the vibration
amplitudes and noise.

• Efficient contact models have to be developed for optimizing these
structures.
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Bearings
• To increase the efficiency of slide and ball bearings, the bearing friction

has to be lowered and the lubrication is used.

• The oil film on the ball bearings reduces friction forces and, hence, the
wear.

• This is a multibody and multicontact problem with friction.

• Goal: to determine the longtime behavior of ball bearings in connection
with the surroundings.
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Wheel-rail contact
• The whell-rail rolling contact problem is a typical example for friction

used to transmit forces.

• The contact behavior depends on the material properties of the contact-
ing bodies.

• The development of heat within the rolling contact influences the tan-
gential contact forces.

• The development of wear leads to unround wheels, which increses the
generation of noise and the cost of maintenance.
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Summary: contact problems with friction

• Two bodies have different surface profiles and different materials.

• Both bodies can vibrate and move spatially, which is described by dis-
placements and velocities of both bodies in the so-called state space.

• Friction is always correlated with development of wear and heat.

• The heat generated and the temperature distribution affect the mate-
rial parameters.

• The worn material can act as a lubricant (so-called third body).
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The Clarke subdifferential
Given a locally Lipschitz function h:E → R, where E is a Banach
space, we define (Clarke (1983)):

• the generalized directional derivative of h at x ∈ E in the direction
v ∈ E by

h0(x; v) = lim sup
y→x, t↓0

h(y + tv) − h(y)

t
.

• the generalized gradient of h at x by ∂h(x), is a subset of a dual
space E∗ given by

∂h(x) = {ζ ∈ E∗ | h0(x; v) ≥ 〈ζ, v〉E∗×E for all v ∈ E}.

The locally Lipschitz function h is called regular (in the sense of Clarke)
at x ∈ E if for all v ∈ E the one-sided directional derivative h′(x; v)
exists and satisfies h0(x; v) = h′(x; v) for all v ∈ E.
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Example of nonmonotone contact problem
in elasticity

Let Ω ⊂ R3 be occupied by a linear elastic body in its undeformed state.
The boundary Γ = ∂Ω of Ω consists of three open disjoint parts ΓD,
ΓN and ΓC, i.e. Γ = ΓD ∪ ΓN ∪ ΓC. A point x ∈ Ω is refereed to a
fixed Cartesian coordinate system. We use the standard notation, for i,
j = 1, 2, 3,

u = (ui) the displacement vector
σ = (σij) the stress tensor
ε = (εij) the strain tensor
f = (fi) the volume force vector
ν = (νi) the outward unit normal vector to Γ

We also decompose the stress vector σ on Γ and the displacement u
on Γ into the normal and tangential components:

σν = (σ ν) · ν, στ = σ ν − σν ν,

uν = u · ν, uτ = u− uν ν.
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In the framework of the small deformation theory, we have the following
pointwise relations in Ω:

σij,j(u) = −fi (the equilibrium equation)

εij(u) =
1

2
(ui,j + uj,i) (the strain–displacement law)

σij(u) = cijkl εkl(u) (the constitutive equation, Hooke’s law)

where σij,j(u) = ∂

∂xj
σij(u) and the elasticity tensor {cijkl}

is assumed to satisfy the ellipticity and symmetry properties:{
cijkl εij εkl ≥ c0 εij εij a.e. in Ω, for all εij = εji ∈ R with c0 > 0

cijkl = cjikl = cklij.
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In order to give a complete formulation of the problem we consider the
following boundary conditions:

on ΓD: u = U (prescribed displacement),
on ΓN : σν = F (i.e. σi = Fi(x) are prescribed tractions),
on ΓC: στ = Cτ (the tangential forces Cτ = Cτ(x) are known)

σν satisfies the idealized law
σν = 0 if uν < 0
σν + k0uν = 0 if 0 ≤ uν < ε
−k0ε ≤ σν ≤ 0 if uν = ε
σν = 0 if uν > ε.

For simplicity in the Dirichlet condition on ΓD, we take U = 0.

The constant k0 > 0 is called the Winkler coefficient.
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Nonmonotone diagram for the Winkler-type support

The Winkler coefficient k0 > 0 and ε > 0.

In the noncontact region σν = 0, in the contact region the sup-
port generates a reaction force which is proportional to its deformation
−σν ∼ uν, the destruction of the support appears when the tractions
reach the limited value (the maximal value of reactions that can be main-
tained by the support in k0ε) and again σν = 0 in the region where the
support is destroyed.
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Since the diagram (uν,−σν) is nonmonotone, it is not possible to for-
mulate the destruction support problem as a variational inequality.

In order to give the variational formulation of the above problem, we
introduce the function β: R → R such that

β(t) =

{
0 if t < 0
k0t if t ∈ [0, ε)
0 if t ≥ ε

and define the multivalued map β̂: R → 2R which is obtained from β by
filling in the jump at t = ε.

Given β ∈ L∞
loc(R) we define β̂ as follows

β̂(ξ) = [β(ξ), β(ξ)] ⊂ R,

where

β(ξ) = lim
δ→0+

ess inf
|t−ξ|≤δ

β(t), β(ξ) = lim
δ→0+

ess sup
|t−ξ|≤δ

β(t).
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It is known, Chang (1981), that there exists a locally Lipschitz func-
tion j: R → R determined (up to an additive constant) by the relation

j(t) =

∫ t

0
β(s) ds and

∂j(t) ⊂ β̂(t).

Additionaly, if lim
t→ξ±

β(t) exist for every ξ ∈ R, then we have

∂j(t) = β̂(t) for t ∈ R.

Taking the above into consideration, the boundary condition given by
Winkler’s law can be written as

−σν ∈ β̂(uν) = ∂j(uν) on ΓC,

where j: R → R is of the form

j(t) =

∫ t

0
β(s) ds =


0 if t < 0
1
2 k0 t

2 if 0 ≤ t ≤ ε
1
2 k0 ε

2 if t > ε.
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Let us introduce the space V of kinematically admissible displacements

V = { v ∈ H1(Ω; R3) | v = 0 on ΓD }

and H = L2(Ω; R3). Then, we have an evolution triple of spaces
(V,H, V ∗).

Let v ∈ V . Multiplying the equilibrium equation by v, integrating
over Ω and applying the Green formula we have

3∑
i,j=1

∫
Ω
σij(u)

∂vi

∂xj
dx =

=
3∑
i=1

∫
Ω
fi vi dx+

3∑
i,j=1

∫
Γ
σij(u) vi νj dΓ.
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Taking into account the boundary conditions, symmetry of the stress
tensor, we arrive at the problem

a(u, v) +

∫
ΓC

(−σν) vν dΓ = 〈l, v〉 for all v ∈ V,

where

a(u, v) =
n∑

i,j=1

∫
Ω
σij(u) εij(v) dx,

〈l, v〉 =
n∑
i=1

∫
Ω
fi vi dx+

n∑
i=1

∫
ΓN

Fi vi dΓ +
n∑
i=1

∫
ΓC

Cτi vτi dΓ.

By the definition of the Clarke subdifferential, we have

j0(uν; vν) ≥ −σν vν for all v ∈ V.

We obtain the problem: find u ∈ V such that

a(u, v) +

∫
ΓC

j0(uν; vν) dΓ ≥ 〈l, v〉 for all v ∈ V.

This problem is called hemivariational inequality.
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Example: nonconvex friction law

jT(uT) = max{f1(uT), f2(uT)}
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Example: nonconvex friction law

jT(uT) = max{a|uT |, f1(uT), f2(uT)}
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Example: zig-zag friction law

jT(uT) = max{f1(uT), f2(uT), f
′
1(uT), f

′
2(uT)}
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Example: zig-zag friction law

jT(uT) = min{f1(uT), f2(uT), f3(uT)}
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Nonmonotone laws

a) Force-displacement diagrams for laminated products
b) Force-displacement diagrams for glass fiber-reinforced epoxy lami-
nated composites
c) Ply stress-strain curve in a lamina with brittle behavior
d) Force-displacement diagram for a graphite-epoxy composite laminate
e) Force-displacement diagram for an aluminium-beryllium composite
beam
f) Scanlon’s diagram
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Example: infinite number of jumps
Let l be an open subset of the real line R and let M be a measur-
able subset of l such that for every open and nonempty subset I of l,
meas(I ∩M) > 0 and meas(I ∩ (l \M)) > 0.
Let

g(s) =

{
b1 if s ∈ M

−b2 if s /∈ M

and j(r) =

∫ r

0
g(θ) dθ. Then the nonconvex potential j is locally

Lipschitz and

∂j(r) = [−b2, b1] for every r ∈ l.
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Example: fuzzy laws
Nonconvex potentials of the form

∂j(r) = [−b2, b1] for every r ∈ l = (−ε, ε)

allow to consider nonfully determined regions around the complete ver-
tical segments of nonmonotone law. This type of laws are called ”fuzzy
laws” after Panagiotopoulos (1993).

The expression of such nonfully determined laws in terms of nonconvex
potentials permits the formulation of a variational theory for this class of
problems.
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Remark 1
A similar hemivariational inequality can be obtained when on ΓC a point-
wise boundary condition for the tangential force

−στ ∈ ∂j(uτ) on ΓC

is assumed and the normal forces σν = Cν, Cν = Cν(x) are pre-
scribed.

Such relation between uτ and −στ appears, for instance, in rock in-
terface analysis in geomechanics and describes a nonmonotone friction
law (Panagiotopoulos (1985,1993)).
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Remark 2
The above approach applies to a class of problems in mechanics and
engineering where the constitutive laws are expressed by means of sub-
differential relations. As a model relation we consider the law

σ ∈ ∂w(ε) in Ω

between the stress tensor σ and the strain tensor ε. Here ∂w denotes
the Clarke subdifferential of a function w: R6 → R.

If in the destruction support problem the elastic body is not longer linear,
then we replace the Hooke law by the nonlinear multivalued relation:

w0(ε(u); ε(v)) ≥
n∑

i,j=1

σij(u)εij(v) for all v ∈ V.
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Proceeding as before, we obtain the following hemivariational inequality:

find u ∈ V such that∫
Ω
w0(ε(u); ε(v)) dx+

∫
ΓC

j0(uν; vν) dσ ≥ 〈l, v〉

for all v ∈ V .

Two particular cases:

10 Ifw(ε) =
1

2
(Cε, ε)R6 =

1

2

∑
ijkh

cijkhεijεhk with symmetric, coercive

tensor C = {cijkh}, i, j, k, h = 1, 2, 3, then ∂w = ∇w, hence we
arrive to the Hooke law σ = Cε.

20 If the function w is continuously differentiable, then we get σij =
∂w(ε)

∂εij
which corresponds to a nonlinear elastic material.
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Elliptic hemivariational inequalities

Consider the following elliptic hemivariational inequality:{
Find u ∈ V such that

〈Au, v〉V ∗×V +

∫
Ω
j0(u; v) dx ≥ 〈f, v〉V ∗×V ∀v ∈ V.

Results on the existence of solutions:
• Existence via regularization procedure combined with the Galerkin

method: Rauch (1977), Panagiotopoulos (1981,1993)

• Existence of solutions via the deformation lemma: Chang (1981) by
introducing Palais-Smale condition for a locally Lipschitz functions

• Existence of solutions via the theory of pseudomonotone opera-
tors: exploiting Browder and Hess (1972), Zeidler (1990), Naniewicz
(1989,1992), Naniewicz and Panagiotopoulos (1995)
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Hemivariational inequality
versus operator inclusion

We associate with the hemivariational inequality: find u ∈ V such that

〈Au, v〉 +

∫
ΓC

j0(γu; γv) dΓ ≥ 〈f, v〉 for all v ∈ V

the following operator inclusion: find u ∈ V such that

Au+ γ∗∂J(γu) 3 f,

where
γ:V → L2(ΓC,Rd) is the trace operator, and

J :L2(ΓC,Rd) → R is the functional of the form

J(z) =

∫
ΓC

j(z(x)) dΓ for z ∈ L2(ΓC,Rd).

Remark: The multivalued term

F (u) = γ∗∂J(γu)

does not have values in H .
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Static hemivariational inequalities
The following hemivariational inequalities are the weak formulations of
static and quasistatic contact problems: find u ∈ V such that

〈Au, v〉 +

∫
ΓC

j0(γu, γu; γv) dΓ ≥ 〈f, v〉 for all v ∈ V.

〈Au, v〉 +

∫
Ω
j0(u, u; v) dΓ ≥ 〈f, v〉 for all v ∈ V.

〈Au, v〉 +

∫
ΓC

k∑
i=1

hi(γu) j0
i (γu; γv) dΓ ≥ 〈f, v〉 for all v ∈ V.

find u ∈ V = L2(0, T ;V ) such that

〈A(t, u(t)), v〉 + 〈
∫ t

0
C(t− s)u(s) ds, v〉 +

+

∫
ΓC

j0(t, γu(t); γv) dΓ ≥ 〈f(t), v〉

for all v ∈ V and a.e. t ∈ (0, T ).
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Three kinds of hemivariational inequalities



International Symposium on Modern Mathematics and Mechanics, Olomouc •First •Prev •Next •Last •Go Back •Full Screen •Close •Quit

(1) An elastic frictional problem
Problem 1. Find a displacement field u: Ω → Rd and a stress field
σ: Ω → Sd such that

Divσ + f0 = 0 in Ω

σ = Fε(u) in Ω

u = 0 on ΓD

σν = fN on ΓN

−σν ∈ ∂jν(uν − g0) on ΓC

−στ ∈ hτ(uν − g0) ∂jτ(uτ) on ΓC.
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(1) An elastic frictional problem
Variational formulation of Problem 1 reads as follows.

Find a displacement field u ∈ V such that

〈Fε(u), ε(v)〉H +

+

∫
ΓC

(j0
ν(uν − g0; vν) + hτ(uν − g0) j

0
τ(uτ ; vτ)) dΓ ≥

≥ 〈f, v〉V ∗×V for all v ∈ V.
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(2) A viscoelastic frictional problem
Problem 2. Find a displacement field u:Q = Ω × (0, T ) → Rd and a
stress field σ:Q → Sd such that

Divσ(t) + f0(t) = 0 in Q

σ(t) = B(t, ε(u(t))) +

∫ t

0
C(t− s, ε(u(s))) ds in Q

u(t) = 0 on ΣD

σ(t)ν = fN(t) on ΣN

−σν(t) ∈ ∂jν(t, uν(t)) on ΣC

−στ(t) ∈ ∂jτ(t, uτ(t)) on ΣC.
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(2) A viscoelastic frictional problem
Variational formulation of Problem 2 reads as follows.

Find a displacement field u: (0, T ) → V such that u ∈ L2(0, T ;V )
and

〈B(t, ε(u(t))) +

∫ t

0
C(t− s, ε(u(s))) ds, ε(v)〉H +

+

∫
ΓC

(j0
ν(t, uν(t); vν) + j0

τ(t, uτ(t); vτ)) dΓ ≥

≥ 〈f(t), v〉V ∗×V for all v ∈ V, a.e. t ∈ (0, T ).
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(3) An electro-elastic frictional problem
Find a displacement field u: Ω → Rd, a stress field σ: Ω → Sd, an
electric potential ϕ: Ω → R and an electric displacement fieldD: Ω →
Rd such that

Divσ + f0 = 0 in Ω
divD − q0 = 0 in Ω
σ = Fε(u) − P>E(ϕ) in Ω
D = Pε(u) + βE(ϕ) in Ω
u = 0 on ΓD
σν = fN on ΓN
ϕ = 0 on Γa
D · ν = qb on Γb
−σν ∈ hν(ϕ− ϕ0) ∂jν(uν − g0) on ΓC
−στ ∈ hτ(ϕ− ϕ0, uν − g0) ∂jτ(uτ) on ΓC
D · ν ∈ he(uν − g0) ∂je(ϕ− ϕ0) on ΓC
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(3) An electro-elastic frictional problem
Variational formulation of Problem 3 reads as follows.

Find a displacement field u ∈ V and an electric potential ϕ ∈ Φ such
that

〈Fε(u), ε(v)〉H + 〈P>∇ϕ, ε(v)〉H +

+

∫
ΓC

(hν(ϕ− ϕ0) j
0
ν(uν − g0; vν) +

+hτ(ϕ− ϕ0, uν − g0) j
0
τ(uτ ; vτ)) dΓ ≥

≥ 〈f, v〉V ∗×V for all v ∈ V,

〈β∇ϕ,∇ψ〉H − 〈Pε(u),∇ψ〉H +

+

∫
ΓC

he(uν − g0) j
0
e(ϕ− ϕ0;ψ) dΓ ≥ 〈q, ψ〉Φ∗×Φ for all ψ ∈ Φ,

where Φ = {ϕ ∈ H1(Ω) |ϕ = 0 on Γa }
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